- Review of linear equations
- Least squares
- Example: curve-fitting
- Vector norms
- Geometrical intuition

System of m linear equations in n unknowns:

$$\begin{vmatrix}
a_{11}x_1 + \cdots + a_{1n}x_n = b_1 \\
a_{21}x_1 + \cdots + a_{2n}x_n = b_2 \\
\vdots & \vdots & \vdots \\
a_{m1}x_1 + \cdots + a_{mn}x_n = b_m
\end{vmatrix} \iff \begin{bmatrix}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \dots & a_{mn}
\end{bmatrix} \begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix} = \begin{bmatrix}
b_1 \\
\vdots \\
b_m
\end{bmatrix}$$

Compact representation: Ax = b. Only three possibilities:

- **1.** exactly one solution (e.g. $x_1 + x_2 = 3$ and $x_1 x_2 = 1$)
- **2.** infinitely many solutions (e.g. $x_1 + x_2 = 0$)
- **3.** no solutions (e.g. $x_1 + x_2 = 1$ and $x_1 + x_2 = 2$)

• **column interpretation**: the vector b is a linear combination of $\{a_1, \ldots, a_n\}$, the columns of A.

$$Ax = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = a_1x_1 + \dots + a_nx_n = b$$

The solution x tells us how the vectors a_i can be combined in order to produce b.

• can be visualized in the output space \mathbb{R}^m .

• row interpretation: the intersection of hyperplanes $\tilde{a}_i^T x = b_i$ where \tilde{a}_i^T is the i^{th} row of A.

$$Ax = \begin{bmatrix} \tilde{a}_1^\mathsf{T} \\ \tilde{a}_2^\mathsf{T} \\ \vdots \\ \tilde{a}_m^\mathsf{T} \end{bmatrix} x = \begin{bmatrix} \tilde{a}_1^\mathsf{T} x \\ \tilde{a}_2^\mathsf{T} x \\ \vdots \\ \tilde{a}_m^\mathsf{T} x \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

The solution x is a point at the intersection of the affine hyperplanes. Each \tilde{a}_i is a normal vector to a hyperplane.

• can be visualized in the input space \mathbb{R}^n .

- The set of solutions of Ax = b is an affine subspace.
- If m > n, there is (usually but not always) no solution. This is the case where A is **tall** (overdetermined).
 - ▶ Can we find x so that $Ax \approx b$?
 - One possibility is to use least squares.
- If m < n, there are infinitely many solutions. This is the case where A is wide (underdetermined).
 - Among all solutions to Ax = b, which one should we pick?
 - One possibility is to use regularization.

In this lecture, we will discuss **least squares**.

- Typical case of interest: m > n (overdetermined). If there is no solution to Ax = b we try instead to have $Ax \approx b$.
- The least-squares approach: make Euclidean norm ||Ax b|| as small as possible.
- Equivalently: make $||Ax b||^2$ as small as possible.

Standard form:

$$\underset{x}{\text{minimize}} \quad \left\| Ax - b \right\|^2$$

It's an unconstrained optimization problem.

- Typical case of interest: m > n (overdetermined). If there is no solution to Ax = b we try instead to have $Ax \approx b$.
- The least-squares approach: make Euclidean norm ||Ax b|| as small as possible.
- Equivalently: make $||Ax b||^2$ as small as possible.

Properties:

- $||x|| = \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{x^T x}$
- In Julia: ||x|| = norm(x)
- In JuMP: $||x||^2 = dot(x,x) = sum(x.^2)$

• **column interpretation**: find the linear combination of columns $\{a_1, \ldots, a_n\}$ that is closest to b.

$$||Ax - b||^2 = ||(a_1x_1 + \cdots + a_nx_n) - b||^2$$

• **row interpretation**: If \tilde{a}_i^T is the i^{th} row of A, define $r_i := \tilde{a}_i^T x - b_i$ to be the i^{th} residual component.

$$||Ax - b||^2 = (\tilde{a}_1^\mathsf{T} x - b_1)^2 + \dots + (\tilde{a}_m^\mathsf{T} x - b_m)^2$$

We minimize the sum of squares of the residuals.

• Solving Ax = b would make all residual components zero. Least squares attempts to make all of them small.

Example: curve-fitting

- We are given noisy data points (x_i, y_i) .
- We suspect they are related by $y = px^2 + qx + r$
- Find the p, q, r that best agrees with the data.

Writing all the equations:

$$y_{1} \approx px_{1}^{2} + qx_{1} + r
 y_{2} \approx px_{2}^{2} + qx_{2} + r
 \vdots
 y_{m} \approx px_{m}^{2} + qx_{m} + r$$

$$\Longrightarrow \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{bmatrix} \approx \begin{bmatrix} x_{1}^{2} & x_{1} & 1 \\ x_{2}^{2} & x_{2} & 1 \\ \vdots & \vdots & \vdots \\ x_{m}^{2} & x_{m} & 1 \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

Also called regression

Example: curve-fitting

- More complicated: $y = pe^x + q\cos(x) r\sqrt{x} + sx^3$
- Find the p, q, r, s that best agrees with the data.

Writing all the equations:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \approx \begin{bmatrix} e^{x_1} & \cos(x_1) & -\sqrt{x_1} & x_1^3 \\ e^{x_2} & \cos(x_2) & -\sqrt{x_2} & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ e^{x_m} & \cos(x_m) & -\sqrt{x_m} & x_m^3 \end{bmatrix} \begin{bmatrix} p \\ q \\ r \\ s \end{bmatrix}$$

Julia notebook: Regression.ipynb

We want to solve Ax = b, but there is no solution. Define the **residual** to be the quantity r := b - Ax. We can't make it zero, so instead we try to make it *small*. Many options!

minimize the largest component (a.k.a. the ∞-norm)

$$||r||_{\infty} = \max_{i} |r_i|$$

minimize the sum of absolute values (a.k.a. the 1-norm)

$$||r||_1 = |r_1| + |r_2| + \cdots + |r_m|$$

minimize the Euclidean norm (a.k.a. the 2-norm)

$$||r||_2 = ||r|| = \sqrt{r_1^2 + r_2^2 + \dots + r_m^2}$$

Example: find $\begin{bmatrix} x \\ x \end{bmatrix}$ that is closest to $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Blue line is the set of points with coordinates (x, x).

Find the one closest to the red point located at (1,2).

Answer depends on your notion of distance!

Example: find
$$\begin{bmatrix} x \\ x \end{bmatrix}$$
 that is closest to $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Minimize largest component:

$$\min_x \, \max\{|x-1|,|x-2|\}$$

Optimum is at x = 1.5.

Example: find
$$\begin{bmatrix} x \\ x \end{bmatrix}$$
 that is closest to $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Minimize sum of components:

$$\min_{x} |x-1| + |x-2|$$

Optimum is any $1 \le x \le 2$.

Example: find
$$\begin{bmatrix} x \\ x \end{bmatrix}$$
 that is closest to $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Minimize sum of squares:

$$\min_{x} (x-1)^2 + (x-2)^2$$

Optimum is at x = 1.5.

Example: find
$$\begin{bmatrix} x \\ x \end{bmatrix}$$
 that is closest to $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Equivalently, we can:

Minimize $\sqrt{\text{sum of squares}}$

$$\min_{x} \sqrt{(x-1)^2 + (x-2)^2}$$

Optimum is at x = 1.5.

minimizing the largest component is an LP:

$$\min_{x} \max_{i} \left| \tilde{a}_{i}^{\mathsf{T}} x - r_{i} \right| \iff \min_{x,t} t$$

$$\mathsf{s.t.} \quad -t \leq \tilde{a}_{i}^{\mathsf{T}} x - r_{i} \leq t$$

minimizing the sum of absolute values is an LP:

$$\min_{x} \sum_{i=1}^{m} \left| \tilde{a}_{i}^{\mathsf{T}} x - r_{i} \right| \iff \min_{x, t_{i}} t_{1} + \dots + t_{m}$$

$$\mathrm{s.t.} \quad -t_{i} \leq \tilde{a}_{i}^{\mathsf{T}} x - r_{i} \leq t_{i}$$

minimizing the 2-norm is not an LP!

$$\min_{x} \sum_{i=1}^{m} \left(\tilde{a}_{i}^{\mathsf{T}} x - r_{i} \right)^{2}$$

Geometry of LS

- The set of points $\{Ax\}$ is a **subspace**.
- We want to find \hat{x} such that $A\hat{x}$ is closest to b.
- **Insight**: $(b A\hat{x})$ must be orthogonal to all line segments contained in the subspace.

Geometry of LS

- Must have: $(A\hat{x} Az)^{T}(b A\hat{x}) = 0$ for all z
- Simplifies to: $(\hat{x} z)^T (A^T b A^T A \hat{x}) = 0$. Since this holds for all z, the **normal equations** are satisfied:

$$A^{\mathsf{T}}A\,\hat{x}=A^{\mathsf{T}}b$$

Normal equations

Theorem: If \hat{x} satisfies the normal equations, then \hat{x} is a solution to the least-squares optimization problem

$$\underset{x}{\mathsf{minimize}} \quad \|Ax - b\|^2$$

Proof: Suppose $A^T A \hat{x} = A^T b$. Let x be any other point.

$$||Ax - b||^{2} = ||A(x - \hat{x}) + (A\hat{x} - b)||^{2}$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2} + 2(x - \hat{x})^{\mathsf{T}}A^{\mathsf{T}}(A\hat{x} - b)$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2}$$

$$\geq ||A\hat{x} - b||^{2}$$

Normal equations

Least squares problems are easy to solve!

- Solving a least squares problem amounts to solving the normal equations.
- Normal equations can be solved in a variety of standard ways: LU (Cholesky) factorization, for example.
- More specialized methods are available if A is very large, sparse, or has a particular structure that can be exploited.
- Comparable to LPs in terms of solution difficulty.

Least squares in Julia

1. Using JuMP:

```
using JuMP, Gurobi
m = Model(solver=GurobiSolver(OutputFlag=0))
@variable( m, x[1:size(A,2)] )
@objective( m, Min, sum((A*x-b).^2) )
solve(m)
```

Note: only Gurobi or Mosek currently support this syntax

2. Solving the normal equations directly:

```
x = inv(A'*A)*(A'*b)
```

Note: Requires A to have full column rank $(A^TA \text{ invertible})$

3. Using the backslash operator (similar to Matlab):

$$x = A b$$

Note: Fastest and most reliable option!