8. Least squares

- Review of linear equations
- Least squares
- Example: curve-fitting
- Vector norms
- Geometrical intuition

Review of linear equations

System of m linear equations in n unknowns:

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered} \Longleftrightarrow\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Compact representation: $A x=b$. Only three possibilities:

1. exactly one solution (e.g. $x_{1}+x_{2}=3$ and $x_{1}-x_{2}=1$)
2. infinitely many solutions (e.g. $x_{1}+x_{2}=0$)
3. no solutions (e.g. $x_{1}+x_{2}=1$ and $x_{1}+x_{2}=2$)

Review of linear equations

- column interpretation: the vector b is a linear combination of $\left\{a_{1}, \ldots, a_{n}\right\}$, the columns of A.

$$
A x=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=a_{1} x_{1}+\cdots+a_{n} x_{n}=b
$$

The solution x tells us how the vectors a_{i} can be combined in order to produce b.

- can be visualized in the output space \mathbb{R}^{m}.

Review of linear equations

- row interpretation: the intersection of hyperplanes $\tilde{a}_{i}^{\top} x=b_{i}$ where \tilde{a}_{i}^{\top} is the $i^{\text {th }}$ row of A.

$$
A x=\left[\begin{array}{c}
\tilde{a}_{1}^{\top} \\
\tilde{a}_{2}^{\top} \\
\vdots \\
\tilde{a}_{m}^{\top}
\end{array}\right] x=\left[\begin{array}{c}
\tilde{a}_{1}^{\top} x \\
\tilde{a}_{2}^{\top} x \\
\vdots \\
\tilde{a}_{m}^{\top} x
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

The solution x is a point at the intersection of the affine hyperplanes. Each \tilde{a}_{i} is a normal vector to a hyperplane.

- can be visualized in the input space \mathbb{R}^{n}.

Review of linear equations

- The set of solutions of $A x=b$ is an affine subspace.
- If $m>n$, there is (usually but not always) no solution. This is the case where A is tall (overdetermined).
- Can we find x so that $A x \approx b$?
- One possibility is to use least squares.
- If $m<n$, there are infinitely many solutions. This is the case where A is wide (underdetermined).
- Among all solutions to $A x=b$, which one should we pick?
- One possibility is to use regularization.

In this lecture, we will discuss least squares.

Least squares

- Typical case of interest: $m>n$ (overdetermined). If there is no solution to $A x=b$ we try instead to have $A x \approx b$.
- The least-squares approach: make Euclidean norm $\|A x-b\|$ as small as possible.
- Equivalently: make $\|A x-b\|^{2}$ as small as possible.

Standard form:

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|^{2}
$$

It's an unconstrained optimization problem.

Least squares

- Typical case of interest: $m>n$ (overdetermined). If there is no solution to $A x=b$ we try instead to have $A x \approx b$.
- The least-squares approach: make Euclidean norm $\|A x-b\|$ as small as possible.
- Equivalently: make $\|A x-b\|^{2}$ as small as possible.

Properties:

- $\|x\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}=\sqrt{x^{\top} x}$
- In Julia: $\|x\|=\operatorname{norm}(\mathrm{x})$
- In JuMP: $\|x\|^{2}=\operatorname{dot}(\mathrm{x}, \mathrm{x})=\operatorname{sum}\left(\mathrm{x} .{ }^{\wedge} 2\right)$

Least squares

- column interpretation: find the linear combination of columns $\left\{a_{1}, \ldots, a_{n}\right\}$ that is closest to b.

$$
\|A x-b\|^{2}=\left\|\left(a_{1} x_{1}+\cdots+a_{n} x_{n}\right)-b\right\|^{2}
$$

Least squares

- row interpretation: If \tilde{a}_{i}^{\top} is the $i^{\text {th }}$ row of A, define $r_{i}:=\tilde{a}_{i}^{\top} x-b_{i}$ to be the $i^{\text {th }}$ residual component.

$$
\|A x-b\|^{2}=\left(\tilde{a}_{1}^{\top} x-b_{1}\right)^{2}+\cdots+\left(\tilde{a}_{m}^{\top} x-b_{m}\right)^{2}
$$

We minimize the sum of squares of the residuals.

- Solving $A x=b$ would make all residual components zero. Least squares attempts to make all of them small.

Example: curve-fitting

- We are given noisy data points $\left(x_{i}, y_{i}\right)$.
- We suspect they are related by $y=p x^{2}+q x+r$
- Find the p, q, r that best agrees with the data.

Writing all the equations:

$$
\begin{gathered}
y_{1} \approx p x_{1}^{2}+q x_{1}+r \\
y_{2} \approx p x_{2}^{2}+q x_{2}+r \\
\quad \vdots \\
y_{m} \approx p x_{m}^{2}+q x_{m}+r
\end{gathered} \Longrightarrow\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] \approx\left[\begin{array}{ccc}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
\vdots & \vdots & \vdots \\
x_{m}^{2} & x_{m} & 1
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]
$$

- Also called regression

Example: curve-fitting

- More complicated: $y=p e^{x}+q \cos (x)-r \sqrt{x}+s x^{3}$
- Find the p, q, r, s that best agrees with the data.

Writing all the equations:

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] \approx\left[\begin{array}{cccc}
e^{x_{1}} & \cos \left(x_{1}\right) & -\sqrt{x_{1}} & x_{1}^{3} \\
e^{x_{2}} & \cos \left(x_{2}\right) & -\sqrt{x_{2}} & x_{2}^{3} \\
\vdots & \vdots & \vdots & \vdots \\
e^{x_{m}} & \cos \left(x_{m}\right) & -\sqrt{x_{m}} & x_{m}^{3}
\end{array}\right]\left[\begin{array}{c}
p \\
q \\
r \\
s
\end{array}\right]
$$

- Julia notebook: Regression.ipynb

Vector norms

We want to solve $A x=b$, but there is no solution. Define the residual to be the quantity $r:=b-A x$. We can't make it zero, so instead we try to make it small. Many options!

- minimize the largest component (a.k.a. the ∞-norm)

$$
\|r\|_{\infty}=\max _{i}\left|r_{i}\right|
$$

- minimize the sum of absolute values (a.k.a. the 1-norm)

$$
\|r\|_{1}=\left|r_{1}\right|+\left|r_{2}\right|+\cdots+\left|r_{m}\right|
$$

- minimize the Euclidean norm (a.k.a. the 2-norm)

$$
\|r\|_{2}=\|r\|=\sqrt{r_{1}^{2}+r_{2}^{2}+\cdots+r_{m}^{2}}
$$

Vector norms

Example: find $\left[\begin{array}{l}x \\ x\end{array}\right]$ that is closest to $\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

Blue line is the set of points with coordinates (x, x).

Find the one closest to the red point located at (1,2).

Answer depends on your notion of distance!

Vector norms

$$
\text { Example: find }\left[\begin{array}{l}
x \\
x
\end{array}\right] \text { that is closest to }\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text {. }
$$

Minimize largest component:

$$
\min _{x} \max \{|x-1|,|x-2|\}
$$

Optimum is at $x=1.5$.

Vector norms

$$
\text { Example: find }\left[\begin{array}{l}
x \\
x
\end{array}\right] \text { that is closest to }\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text {. }
$$

Minimize sum of components:

$$
\min _{x}|x-1|+|x-2|
$$

Optimum is any $1 \leq x \leq 2$.

Vector norms

$$
\text { Example: find }\left[\begin{array}{l}
x \\
x
\end{array}\right] \text { that is closest to }\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text {. }
$$

Minimize sum of squares:

$$
\min _{x}(x-1)^{2}+(x-2)^{2}
$$

Optimum is at $x=1.5$.

Vector norms

$$
\text { Example: find }\left[\begin{array}{l}
x \\
x
\end{array}\right] \text { that is closest to }\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text {. }
$$

Equivalently, we can:
Minimize $\sqrt{\text { sum of squares }}$

$$
\min _{x} \sqrt{(x-1)^{2}+(x-2)^{2}}
$$

Optimum is at $x=1.5$.

Vector norms

- minimizing the largest component is an LP:

$$
\min _{x} \max _{i}\left|\tilde{a}_{i}^{\top} x-r_{i}\right| \Longleftrightarrow \min _{x, t} t
$$

- minimizing the sum of absolute values is an LP:

$$
\min _{x} \sum_{i=1}^{m}\left|\tilde{a}_{i}^{\top} x-r_{i}\right| \Longleftrightarrow \quad \begin{array}{ll}
\min _{x, t_{i}} & t_{1}+\cdots+t_{m} \\
\text { s.t. } & -t_{i} \leq \tilde{a}_{i}^{\top} x-r_{i} \leq t_{i}
\end{array}
$$

- minimizing the 2-norm is not an LP!

$$
\min _{x} \sum_{i=1}^{m}\left(\tilde{a}_{i}^{\top} x-r_{i}\right)^{2}
$$

Geometry of LS

- The set of points $\{A x\}$ is a subspace.
- We want to find \hat{x} such that $A \hat{x}$ is closest to b.
- Insight: $(b-A \hat{x})$ must be orthogonal to all line segments contained in the subspace.

Geometry of LS

- Must have: $(A \hat{x}-A z)^{\top}(b-A \hat{x})=0$ for all z
- Simplifies to: $(\hat{x}-z)^{\top}\left(A^{\top} b-A^{\top} A \hat{x}\right)=0$. Since this holds for all z, the normal equations are satisfied:

$$
A^{\top} A \hat{x}=A^{\top} b
$$

Normal equations

Theorem: If \hat{x} satisfies the normal equations, then \hat{x} is a solution to the least-squares optimization problem

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|^{2}
$$

Proof: Suppose $A^{\top} A \hat{x}=A^{\top} b$. Let x be any other point.

$$
\begin{aligned}
\|A x-b\|^{2} & =\|A(x-\hat{x})+(A \hat{x}-b)\|^{2} \\
& =\|A(x-\hat{x})\|^{2}+\|A \hat{x}-b\|^{2}+2(x-\hat{x})^{\top} A^{\top}(A \hat{x}-b) \\
& =\|A(x-\hat{x})\|^{2}+\|A \hat{x}-b\|^{2} \\
& \geq\|A \hat{x}-b\|^{2}
\end{aligned}
$$

Normal equations

Least squares problems are easy to solve!

- Solving a least squares problem amounts to solving the normal equations.
- Normal equations can be solved in a variety of standard ways: LU (Cholesky) factorization, for example.
- More specialized methods are available if A is very large, sparse, or has a particular structure that can be exploited.
- Comparable to LPs in terms of solution difficulty.

Least squares in Julia

1. Using JuMP:
```
using JuMP, Gurobi
    m = Model(solver=GurobiSolver(OutputFlag=0))
    @variable( m, x[1:size(A,2)] )
    @objective( m, Min, sum((A*x-b).^2) )
    solve(m)
```

Note: only Gurobi or Mosek currently support this syntax
2. Solving the normal equations directly:
$\mathrm{x}=\operatorname{inv}\left(\mathrm{A}^{\prime} * \mathrm{~A}\right) *\left(\mathrm{~A}^{\prime} * \mathrm{~b}\right)$
Note: Requires A to have full column rank ($A^{\top} A$ invertible)
3. Using the backslash operator (similar to Matlab):
$\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$
Note: Fastest and most reliable option!

