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Review of linear equations

System of m linear equations in n unknowns:

anxy + -+ ainX, = by

dil --. din X1
axnXy + -+ apXx, = by

amiX1 + -+ ampXp = bm

Compact representation: Ax = b. Only three possibilities:

1. exactly one solution (e.g. x1 +x =3 and x; — xp = 1)
2. infinitely many solutions (e.g. x; + x, = 0)

3. no solutions (e.g. x1 + xo =1 and x; + x, = 2)
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Review of linear equations

e column interpretation: the vector b is a linear

combination of {ay,...,a,}, the columns of A.
X1
X2
Ax=lay a ... a) | . |=axa+ - +ax,=b
Xn

The solution x tells us how the vectors a; can be combined
in order to produce b.

e can be visualized in the output space R™.
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Review of linear equations

e row interpretation: the intersection of hyperplanes
37 x = b; where 3] is the i*" row of A.

=T T

é;r ég—X b2
AX = A X = i =

=T =T

a,, a,x bm

The solution x is a point at the intersection of the affine
hyperplanes. Each &; is a normal vector to a hyperplane.

e can be visualized in the input space R".
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Review of linear equations

e The set of solutions of Ax = b is an affine subspace.
e If m > n, there is (usually but not always) no solution.
This is the case where A is tall (overdetermined).

» Can we find x so that Ax ~ b ?

» One possibility is to use least squares.

e If m < n, there are infinitely many solutions. This is the
case where A is wide (underdetermined).

» Among all solutions to Ax = b, which one should we pick?

» One possibility is to use regularization.

In this lecture, we will discuss least squares.
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Least squares

e Typical case of interest: m > n (overdetermined). If there
is no solution to Ax = b we try instead to have Ax =~ b.

e The least-squares approach: make Euclidean norm
||Ax — b|| as small as possible.

e Equivalently: make ||Ax — b||? as small as possible.

Standard form:

L. 2
minimize ||Ax— b||
X

It's an unconstrained optimization problem.
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Least squares
e Typical case of interest: m > n (overdetermined). If there
is no solution to Ax = b we try instead to have Ax =~ b.

e The least-squares approach: make Euclidean norm
||Ax — b|| as small as possible.

e Equivalently: make ||Ax — b||? as small as possible.

Properties:

o lIxll = X+ = VxXTx

e In Julia: ||x|| = norm(x)

e In JuMP: |x||? = dot (x,x) = sum(x."2)
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Least squares

e column interpretation: find the linear combination of
columns {ai, ..., a,} that is closest to b.

|Ax = b = ||[(avxa + - - + anxa) — b||

ai Xy + arxy
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Least squares

e row interpretation: If 3] is the i*" row of A, define
r; := 4] x — b; to be the /™" residual component.

1A — b]|* = (& x — b1)* + - + (G5, — bm)’

We minimize the sum of squares of the residuals.

e Solving Ax = b would make all residual components zero.

Least squares attempts to make all of them small.
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Example: curve-fitting

e We are given noisy data points (x;, ;).
e We suspect they are related by y = px® 4+ gx + r
e Find the p, g, r that best agrees with the data.

Writing all the equations:

2
n=pxqgtagx+r " X2 ox 1

Y2 N pXg + qxa 1 ¥2 X2 x 1] [P
= ||~ o

!
Q

Y R PXoy + QX + 1 Y] [ X 1

e Also called regression



Example: curve-fitting

e More complicated: y = pe* + gcos(x) — ry/x + s x3
e Find the p, g, r, s that best agrees with the data.

Writing all the equations:

" et cos(x) —vx X | [p
Vo e? cos(xx) —vX X ||gqg

2 SN A
Yim em cos(Xm) —+/Xm x| LS

e Julia notebook: Regression.ipynb


http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Regression.ipynb

Vector norms

We want to solve Ax = b, but there is no solution. Define the
residual to be the quantity r := b — Ax. We can’t make it
zero, so instead we try to make it small. Many options!

e minimize the largest component (a.k.a. the oco-norm)
[l = max]r
e minimize the sum of absolute values (a.k.a. the 1-norm)
Irlle = [l 4 [raf + -+ [rm|

e minimize the Euclidean norm (a.k.a. the 2-norm)

Irllz =Nl = /2 + 7+ 414,



Vector norms

Example: find [ﬂ that is closest to B]

y
4 -
Blue line is the set of points
with coordinates (x, x). 3t
Find the one closest to the red 2¢ .

point located at (1,2).

Answer depends on your notion

of distancel! -1 1 2




Vector norms

Example: find [ﬂ that is closest to B]

Minimize largest component:

min max{|x — 1|, |x — 2|} \i\
Optimum is at x = 1.5. \/




Vector norms

Example: find [ﬂ that is closest to B]

Minimize sum of components:

min |x — 1| + |x — 2| \2
Optimum is any 1 < x < 2. \/
‘ L : : X




Vector norms

Example: find [ﬂ that is closest to B]

Minimize sum of squares:

min (x — 12+ (x —2)?

1
Optimum is at x = 1.5. \/
. . . C




Vector norms

Example: find [ﬂ that is closest to B]

Equivalently, we can:

Minimize y/sum of squares

2%
i ETRETE N,

Optimum is at x = 1.5.




Vector norms
® minimizing the largest component is an LP:
: T min t
min max}a,x—r,-‘ <— X,t
X 1
st. —t< 5,-Tx —r;
e minimizing the sum of absolute values is an LP:
min t; + .-+t

m
: =T
min E ‘a,-x—r,-’ = x,t;
x
i=1 s.t. —t; < a,-Tx — I

® minimizing the 2-norm is not an LP!



Geometry of LS

e The set of points {Ax} is a subspace.
e We want to find X such that AX is closest to b.

e Insight: (b — AX) must be orthogonal to all line segments
contained in the subspace.



Geometry of LS

e Must have: (A% — Az)T(b—AX) =0 forall z
e Simplifies to: (X —z)T(ATh — ATAR) = 0. Since this holds
for all z, the normal equations are satisfied:

ATAR =ATh



Normal equations

Theorem: If X satisfies the normal equations, then X is a
solution to the least-squares optimization problem

minimize ||Ax — sz
X

Proof: Suppose ATA% = ATh. Let x be any other point.

A% — blF = |A(x - ) + (A% - )P
x — R)|12 + [|A% — b|)? + 2(x — R)TAT(AR — b)
= [[A(x = R)|1> + | A% — b|?

> ||A% — b||?



Normal equations

Least squares problems are easy to solve!

e Solving a least squares problem amounts to solving the
normal equations.

e Normal equations can be solved in a variety of standard
ways: LU (Cholesky) factorization, for example.

e More specialized methods are available if A is very large,

sparse, or has a particular structure that can be exploited.

e Comparable to LPs in terms of solution difficulty.



Least squares in Julia

1. Using JuMP:
using JuMP, Gurobi
m = Model (solver=GurobiSolver (OutputFlag=0))
@variable( m, x[1l:size(A,2)] )
Q@objective( m, Min, sum((A*x-b)."2) )
solve(m)
Note: only Gurobi or Mosek currently support this syntax

2. Solving the normal equations directly:
x = inv(A’*A)*(A’*b)
Note: Requires A to have full column rank (AT A invertible)

3. Using the backslash operator (similar to Matlab):
x = A\b
Note: Fastest and most reliable option!
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