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Review of linear equations

System of m linear equations in n unknowns:

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

...
...

am1x1 + · · ·+ amnxn = bm

⇐⇒

a11 . . . a1n
...

. . .
...

am1 . . . amn


x1...
xn

 =

b1...
bm



Compact representation: Ax = b. Only three possibilities:

1. exactly one solution (e.g. x1 + x2 = 3 and x1 − x2 = 1)

2. infinitely many solutions (e.g. x1 + x2 = 0)

3. no solutions (e.g. x1 + x2 = 1 and x1 + x2 = 2)
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Review of linear equations

� column interpretation: the vector b is a linear
combination of {a1, . . . , an}, the columns of A.

Ax =
[
a1 a2 . . . an

]

x1
x2
...
xn

 = a1x1 + · · ·+ anxn = b

The solution x tells us how the vectors ai can be combined
in order to produce b.

� can be visualized in the output space Rm.
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Review of linear equations

� row interpretation: the intersection of hyperplanes
ãTi x = bi where ãTi is the i th row of A.

Ax =


ãT1
ãT2
...
ãTm

 x =


ãT1 x
ãT2 x

...
ãTmx

 =


b1
b2
...
bm


The solution x is a point at the intersection of the affine
hyperplanes. Each ãi is a normal vector to a hyperplane.

� can be visualized in the input space Rn.
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Review of linear equations

� The set of solutions of Ax = b is an affine subspace.

� If m > n, there is (usually but not always) no solution.
This is the case where A is tall (overdetermined).

I Can we find x so that Ax ≈ b ?

I One possibility is to use least squares.

� If m < n, there are infinitely many solutions. This is the
case where A is wide (underdetermined).

I Among all solutions to Ax = b, which one should we pick?

I One possibility is to use regularization.

In this lecture, we will discuss least squares.
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Least squares

� Typical case of interest: m > n (overdetermined). If there
is no solution to Ax = b we try instead to have Ax ≈ b.

� The least-squares approach: make Euclidean norm
‖Ax − b‖ as small as possible.

� Equivalently: make ‖Ax − b‖2 as small as possible.

Standard form:

minimize
x

∥∥Ax − b
∥∥2

It’s an unconstrained optimization problem.
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Least squares

� Typical case of interest: m > n (overdetermined). If there
is no solution to Ax = b we try instead to have Ax ≈ b.

� The least-squares approach: make Euclidean norm
‖Ax − b‖ as small as possible.

� Equivalently: make ‖Ax − b‖2 as small as possible.

Properties:

� ‖x‖ =
√
x21 + · · ·+ x2n =

√
xTx

� In Julia: ‖x‖ = norm(x)

� In JuMP: ‖x‖2 = dot(x,x) = sum(x.^2)
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Least squares

� column interpretation: find the linear combination of
columns {a1, . . . , an} that is closest to b.

‖Ax − b‖2 =
∥∥(a1x1 + · · ·+ anxn)− b

∥∥2

a1

a2

b

a1x1 + a2x2
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Least squares

� row interpretation: If ãTi is the i th row of A, define
ri := ãTi x − bi to be the i th residual component.

‖Ax − b‖2 = (ãT1 x − b1)2 + · · ·+ (ãTmx − bm)2

We minimize the sum of squares of the residuals.

� Solving Ax = b would make all residual components zero.
Least squares attempts to make all of them small.
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Example: curve-fitting

� We are given noisy data points (xi , yi).

� We suspect they are related by y = px2 + qx + r

� Find the p, q, r that best agrees with the data.

Writing all the equations:

y1 ≈ px21 + qx1 + r

y2 ≈ px22 + qx2 + r

...

ym ≈ px2m + qxm + r

=⇒


y1
y2
...
ym

 ≈

x21 x1 1
x22 x2 1
...

...
...

x2m xm 1


pq
r



� Also called regression
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Example: curve-fitting

� More complicated: y = pex + q cos(x)− r
√
x + s x3

� Find the p, q, r , s that best agrees with the data.

Writing all the equations:
y1
y2
...
ym

 ≈

ex1 cos(x1) −√x1 x31
ex2 cos(x2) −√x2 x32
...

...
...

...
exm cos(xm) −√xm x3m



p
q
r
s


� Julia notebook: Regression.ipynb
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Vector norms

We want to solve Ax = b, but there is no solution. Define the
residual to be the quantity r := b − Ax . We can’t make it
zero, so instead we try to make it small. Many options!

� minimize the largest component (a.k.a. the ∞-norm)

‖r‖∞ = max
i
|ri |

� minimize the sum of absolute values (a.k.a. the 1-norm)

‖r‖1 = |r1|+ |r2|+ · · ·+ |rm|

� minimize the Euclidean norm (a.k.a. the 2-norm)

‖r‖2 = ‖r‖ =
√

r 21 + r 22 + · · ·+ r 2m
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Vector norms

Example: find

[
x
x

]
that is closest to

[
1
2

]
.

Blue line is the set of points
with coordinates (x , x).

Find the one closest to the red
point located at (1, 2).

Answer depends on your notion
of distance! -1 1 2 3 4

x

-1

1

2

3

4
y
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Vector norms

Example: find

[
x
x

]
that is closest to

[
1
2

]
.

Minimize largest component:

min
x

max{|x − 1|, |x − 2|}

Optimum is at x = 1.5.

-1 1 2 3 4
x

-1

1

2

3

4
f (x)
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Vector norms

Example: find

[
x
x

]
that is closest to

[
1
2

]
.

Minimize sum of components:

min
x
|x − 1|+ |x − 2|

Optimum is any 1 ≤ x ≤ 2.

-1 1 2 3 4
x

-1

1

2

3

4
f (x)
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Vector norms

Example: find

[
x
x

]
that is closest to

[
1
2

]
.

Minimize sum of squares:

min
x

(x − 1)2 + (x − 2)2

Optimum is at x = 1.5.

-1 1 2 3 4
x

-1

1

2

3

4
f (x)
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Vector norms

Example: find

[
x
x

]
that is closest to

[
1
2

]
.

Equivalently, we can:

Minimize
√

sum of squares

min
x

√
(x − 1)2 + (x − 2)2

Optimum is at x = 1.5.
-1 1 2 3 4

x

-1

1

2

3

4
f (x)
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Vector norms

� minimizing the largest component is an LP:

min
x

max
i

∣∣ãTi x − ri
∣∣ ⇐⇒

min
x ,t

t

s.t. − t ≤ ãTi x − ri ≤ t

� minimizing the sum of absolute values is an LP:

min
x

m∑
i=1

∣∣ãTi x − ri
∣∣ ⇐⇒

min
x ,ti

t1 + · · ·+ tm

s.t. − ti ≤ ãTi x − ri ≤ ti

� minimizing the 2-norm is not an LP!

min
x

m∑
i=1

(
ãTi x − ri

)2
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Geometry of LS

a1

a2

b

Ax̂

b − Ax̂

� The set of points {Ax} is a subspace.

� We want to find x̂ such that Ax̂ is closest to b.

� Insight: (b − Ax̂) must be orthogonal to all line segments
contained in the subspace.
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Geometry of LS

a1

a2

b

Ax̂

b − Ax̂

� Must have: (Ax̂ − Az)T(b − Ax̂) = 0 for all z

� Simplifies to: (x̂ − z)T(ATb − ATAx̂) = 0. Since this holds
for all z , the normal equations are satisfied:

ATA x̂ = ATb
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Normal equations

Theorem: If x̂ satisfies the normal equations, then x̂ is a
solution to the least-squares optimization problem

minimize
x

‖Ax − b‖2

Proof: Suppose ATA x̂ = ATb. Let x be any other point.

‖Ax − b‖2 = ‖A(x − x̂) + (Ax̂ − b)‖2

= ‖A(x − x̂)‖2 + ‖Ax̂ − b‖2 + 2(x − x̂)TAT(Ax̂ − b)

= ‖A(x − x̂)‖2 + ‖Ax̂ − b‖2

≥ ‖Ax̂ − b‖2
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Normal equations

Least squares problems are easy to solve!

� Solving a least squares problem amounts to solving the
normal equations.

� Normal equations can be solved in a variety of standard
ways: LU (Cholesky) factorization, for example.

� More specialized methods are available if A is very large,
sparse, or has a particular structure that can be exploited.

� Comparable to LPs in terms of solution difficulty.
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Least squares in Julia

1. Using JuMP:
using JuMP, Gurobi

m = Model(solver=GurobiSolver(OutputFlag=0))

@variable( m, x[1:size(A,2)] )

@objective( m, Min, sum((A*x-b).^2) )

solve(m)

Note: only Gurobi or Mosek currently support this syntax

2. Solving the normal equations directly:
x = inv(A’*A)*(A’*b)

Note: Requires A to have full column rank (ATA invertible)

3. Using the backslash operator (similar to Matlab):
x = A\b

Note: Fastest and most reliable option!
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